The two types of SSD’s

Most SSD manufacturers use non-volatile NAND flash memory in the construction of their SSDs because of the lower cost compared with DRAM and the ability to retain the data without a constant power supply, ensuring data persistence through sudden power outages. Flash memory SSDs are slower than DRAM solutions, and some early designs were even slower than HDDs after continued use. This problem was resolved by controllers that came out in 2009 and later

Flash memory-based solutions are typically packaged in standard disk drive form factors (1.8-, 2.5-, and 3.5-inch), but also in smaller unique and compact layouts made possible by the small size of flash memory.

Lower-priced drives usually use triple-level cell (TLC) or multi-level cell (MLC) flash memory, which is slower and less reliable than single-level cell (SLC) flash memory.  This can be mitigated or even reversed by the internal design structure of the SSD, such as interleaving, changes to writing algorithms, and higher over-provisioning (more excess capacity) with which the wear-leveling algorithms can work.

DRAM-based

See also: I-RAM and Hyperdrive (storage)

SSDs based on volatile memory such as DRAM are characterized by very fast data access, generally less than 10 microseconds, and are used primarily to accelerate applications that would otherwise be held back by the latency of flash SSDs or traditional HDDs.

DRAM-based SSDs usually incorporate either an internal battery or an external AC/DC adapter and backup storage systems to ensure data persistence while no power is being supplied to the drive from external sources. If power is lost, the battery provides power while all information is copied from random access memory (RAM) to back-up storage. When the power is restored, the information is copied back to the RAM from the back-up storage, and the SSD resumes normal operation (similar to the hibernate function used in modern operating systems).

SSDs of this type are usually fitted with DRAM modules of the same type used in regular PCs and servers, which can be swapped out and replaced by larger modules.  Such as i-RAM, HyperOs HyperDrive, DDRdrive X1, etc. Some manufacturers of DRAM SSDs solder the DRAM chips directly to the drive, and do not intend the chips to be swapped out—such as ZeusRAM, Aeon Drive, etc.

A remote, indirect memory-access disk (RIndMA Disk) uses a secondary computer with a fast network or (direct) Infiniband connection to act like a RAM-based SSD, but the new, faster, flash-memory based, SSDs already available in 2009 are making this option not as cost effective

While the price of DRAM continues to fall, the price of Flash memory falls even faster. The “Flash becomes cheaper than DRAM” crossover point occurred approximately 2004.

 

2017-12-28T00:06:45+00:00